
) r • J

N92-233 8

SLS-PLAN-ITI A Knowledge-Based Blackboard Scheduling System s_ . -

for Spacelab Life Sciences Missions ///_I

Cheng-Yan Kao (+)

Dept. of Computer Science

& Information Engineering

National Taiwan University

Taipei, Taiwan 107

&

Seok-Hua Lee (*)
GE Government Services

General Electric Corporation

1050 Bay Area Blvd

Houston, TX 77058, USA

Tel: 886-2-363-0231 ext. 3231

Fax: 886-2-362-8167

Tel: (713) 488-9005 ,t [/ "_) _'_
Fax: (713) 488-1092 _) _C __

"J. 7i
of GE GovernmentThe Mission Integration Office (MIO)

Services was responsible for generating and updating the crew

activity plan and resource assignments for the Spacelab Life

Science SLS-I mission for NASA. The nine-day SLS-I shuttle

mission was launched on June 5, 1991.

The Spacelab mission planning was an overconstrained domain.

There were over fifty resources and several hundred activities

with several thousand steps to be scheduled in the SLS-I mission.

This is an NP-hard problem. The primary scheduling tool in use

during the SLS-I planning phase was the operations research (OR)

based, tabular form Experiment Scheduling System (ESS) developed

by Marshall Space Flight Center (MSFC).

PLAN-IT is an artificial intelligence (AI) based interactive

graphic timeline editor for ESS developed by Jet Propulsion

Laboratory (JPL). We have enhanced the PLAN-IT software for use

in the scheduling of Spacelab experiments to support the Spacelab

Life Science missions. The enhanced software SLS-PLAN-IT System

was used to support the real time reactive scheduling task during
the SLS-I mission. This software will be further enhanced before

the SLS-2 mission and is expected to completely replace the ESS

currently in use in MIO in the SLS-3 time frame.

SLS-PLAN-IT is a frame-based blackboard scheduling shell

which, from scheduling input, creates resource-requiring event-

duration-objects and resource-usage-duration-objects. The

blackboard structure is to keep track of the effects of event-

duration-objects on the resource-usage-duration-objects. The

constraints are propagated automatically for conflict resolution.

Various scheduling heuristics are coded in procedural form and

can be invoked any time at the user's request. The timeline

entries can be manipulated by the mouse to support the scheduling

task. This paper describes the system architecture and what we

have learned with the SLS-PLAN-IT project.

(+)

(*)

The first author was involved in this project when he was an

employee of GE Government Services, Houston, Texas.

All correspondence should be sent to the second author.

13



Introduction:

The Mission Integration Office (MIO) of GE Government

Services was responsible for generating and updating the crew

activity plan and resource assignments for the Spacelab Life

Science SLS-I mission for NASA. The nine-day SLS-I shuttle

mission was launched on June 5, 1991. The primary scheduling

tool in use during the SLS-I planning phase was the Experiment

Scheduling System (ESS) developed by Marshall Space Flight Center

(MSFC). The ESS software is hosted on a VAX computer. It has

evolved over the past ten years into a FORTRAN program with

i00,000 lines of FORTRAN code. However, it is very time-consuming

in using ESS to update the crew activity timeline for the SLS

missions. A joint effort between MSFC and Jet Propulsion

Laboratory (JPL) of NASA went on for four years to develop an

AI-based companion interactive graphic timeline editor, called

PLAN-IT (shorthand for Plan-Integrated Timelines). PLAN-IT is a

frame-based functional timeline manager. The objective was to

enable the timeline engineers to explore scheduling options,

recognize scheduling opportunities and thereby include additional

or better-arranged activity into a schedule. The origin of PLAN-

IT can be traced back to the AI planner DEVISER system of Vere

(Ref. 13). Unfortunately, this joint effort of MSFC and JPL was

terminated in October, 1988, and the PLAN-IT scheduling system
was left unused in MSFC since then. Three main reasons for not

using PLAN-IT were: (I) the integration of PLAN-IT into the ESS

was poor, (2) the response time of PLAN-IT was unacceptable in

certain cases, and (3) the resistance from the ESS developer and

user communities was strong.

MIO of GE Government Services obtained the original PLAN-IT
source code from JPL in 1988. We have enhanced the software for

use in the scheduling of Spacelab experiments to support the

Spacelab Life Science missions. The enhanced software SLS-PLAN-IT

Scheduling System was used to support the real time reactive

scheduling task during the SLS-I mission. This software will be

further enhanced for the SLS-2 mission, and is expected to

completely replace the ESS Flight Planning System (ESS/FPS)

currently in use by the MIO in the SLS-3 time frame. The SLS-

PLAN-IT is currently hosted on the TI Micro-Explorer Lisp machine

and will be ported to the SUN workstation under the Common Lisp

Object System (CLOS) environment.

The project objective of SLS-PLAN-IT is to provide an

intelligent scheduling tool that will allow the timeline

engineers of the Payload Activity Planning team to interactively

update an ESS generated timeline in a way that is time and cost

effective. SLS-PLAN-IT is a decision support tool. Its purpose

is to aid an expert human scheduler not only with effective

graphics and a menu-driven interface, but also with natural

problem presentation.

A vital feature of SLS-PLAN-IT is its resource timelines,

which are similar to timelines normally in use. The timeline

display shows the scheduler the conflicts in a trial sequence so

14



that the sequence can be modified and improved immediately. The

sequence can be modified and the strategy can be directed while a

strategy is running. There are several advantages to this

approach. It allows the user to understand easily what is

happening. The trial sequence is displayed directly on the

screen. As the sequence changes incrementally, the user can

quickly grasp what is happening and interact with the scheduling

process. He can focus on some aspect of scheduling without being

concerned of the other constraints. This feature also makes it

easier for the user to capture expert advice.

There also exist controls that allow the user to focus on a

strategy. For example, the user can disable some of the resource

timelines so that the strategies will only consider a subset of

the resources. After the basic schedule is laid out, additional

resources can be evaluated. Another control approach is to tell

SLS-PLAN-IT to work with certain types of activities or to

consider moving activities within a user-defined window. The

effect of SLS-PLAN-IT's strategies can be reduced by freezing

some activities since only the user can move frozen activities.

One of the more effective control approaches allows the user to

select a single activity to which a strategy can be applied so

that he can ask SLS-PLAN-IT if there is a better place in the

sequence for this activity. This feature provides the scheduler

with a "smart" sequence editor.

The goal of SLS-PLAN-IT is to achieve a blend of human and

machine expertise. SLS-PLAN-IT initially produces preliminary

layouts. After political decisions have been made, they will be

reflected in the schedule. The operator can direct SLS-PLAN-IT

to make minor changes in the sequence, or he can control the

strategies. Finally, the operator can use SLS-PLAN-IT as an

editor to verify that certain constraints have not been violated.

In the following sections, we will first describe the

problem domain, review the relevant literature, then give a

detailed description of the system architecture, report the

current status and enhancement plan of the project, and finally

discuss what we have learned from the project.

The Problem Domain:

Mission planning schedules are composed of three types of

element: activities, resources, and constraints. Activities are

the events in a schedule. They can either have durations (like

experiment steps) or be point events (like a space shuttle

launch). Activities consume, create, or replenish resources.

Activities also have inter-relationships that are often expressed

as precedence relationships or concurrency/non-concurrency of

activities. Resources can be associated with one activity, a

group of activities, or all activities. There are activity-

specific resources, e.g., equipment associated with an

experiment, and pool-resources, e.g., electrical power.

The Spacelab mission planning is an overconstrained domain.

15



In past Spacelab or Skylab missions, low priority experiments
were occasionally bumped to achieve more important goals.
Therefore, the mission planners must be able to relax or even
ignore certain constraints in order to get an acceptable

schedule.

In our timeline engineers' terminology, a performance is an

execution of an experiment, and a step is an activity of an

experiment. The experiments are then modeled by the constraints

of the steps involved and the constraints of the performances.

The constraints imposed for the Spacelab missions can be

categorized into time constraints and resource constraints. The

time constraints include performance time window, maximum and

minimum performance duration, maximum and minimum performance

delay, maximum and minimum step duration, maximum and minimum

step delay, concurrency and non-concurrency of steps, and target

or attitude opportunities. The resource constraints include

equipment, nondepletable resources, depletable resources,

resource carry-through, crew selection, crew lock-in, crew

monitoring, and the requirements of balanced resource usage. In

fact, this is an NP-hard scheduling problem.

Literature Review:

Bennington and McGinnis gave a survey of the past research

in resource constrained project scheduling problems (Ref. i).

They demonstrated how to search for the optimal algorithm by

three basic approaches: the first approach was to formulate the

problem as an integer linear programming (ILP) problem, which can

be solved by standard ILP techniques; the second approach was to

directly employ some enumerative scheme for constructing an

optimal schedule; and the third was to formulate the problem in

terms of minimaximal paths in a disjunctive graph, which could be

solved by network flow methods or implicit enumerations.

In spite of the progress in research, almost all researchers

have agreed that the heuristic method is still the only viable

solution technique for large-scale practical problems since the

computing time would be prohibitively large if exact optimal

procedures were used. Studies of the complexity of the resource

constrained scheduling problems also draw lots of attention.

Coffman showed that these problems were actually NP-hard (Ref.

3). Elmaghraby (Ref. 5) and Coffman (Ref. 3) contain excellent

coverage of the recent results in resource constrained scheduling

problems.

In recent years, the emergence of expert system technology

has had a great impact on scheduling system design. Dhar and

Ranganathan used the university course timetable scheduling

problem as an example to contrast the advantages and

disadvantages of AI approaches versus OR approaches (Ref. 4).

They pointed out that the OR approaches had the following

disadvantages:

I. Single objective limitations: The objective function used in

OR formulation express one goal, but there are other goals

16



that the scheduling expert tries to satisfy.
2. Compiled knowledge limitations: Solutions are very sensitive

to the coefficients of the objective function, and some

default knowledge is difficult to incorporate into the
coefficients.

3. Global optimization limitations: Global optimization

essentially obscures the reasons for assignments and implies

lack of explanation for its decisions.

4. Lack of support in making plan revisions: Plan revisions are

inevitable, but it is very difficult for the decision maker to

revise the schedule with minimum perturbation in OR

approaches.

Jaap and Davis described an interesting review of the

software development of ESS (Ref. 8). The ESS software hard-coded

the scheduling rules in FORTRAN to handle the time constrains and

the resource constraints. The scheduling core of ESS consisted of

five modules: the bookkeeper for resource tracking, the checker

for determining availability of resources, the loader to load the

schedule, the trace listing as an explainer, and finally the

selector to determine the ordering of scheduling the activities.

Two methods, the random-order method and the preference-order

method, were incorporated in ESS.

Boarnet documented the requirements of a scheduling expert

system tool from NASA's point of view (Ref. 2). It was one of the

best examples of the impact of expert system technology on the

design of the scheduling system software. In the paper, Boarnet

discussed the requirements of a scheduling expert system tool for

Space Station Freedom mission planning applications. He pointed

out that the scheduling tool should represent activities,

resources, and constraints, with facilities to group those

elements and to represent the time variance of the elements. The

tool should support activity scheduling and job scheduling.

Enumeration of alternatives with algorithms, hypothetical worlds,

rule systems, and schedule hierarchies should be integrated into

a powerful reasoning tool. The tool must support the procedural

code that might be necessary either for procedure attachment or

to control the scheduling techniques. The tool must support

interactive scheduling with intelligence that can be interactive

or automatic at the user's discretion, and with good human
factors.

In the panel discussion on "AI-Based Schedulers in

Manufacturing Practice" held in IJCAI-1989, Detroit, USA, Sidhu

(Ref. I0) pointed out that the most common mistakes in building

intelligent scheduling system include:

i. Inadequate analysis of dominant domain characteristics,

especially when prepackaged scheduling tools are used.

2. Inappropriate reliance on locally greedy strategies. Because

most scheduling problems are fairly complex, they are often

simplified by using simple local dispatching rules.

3. Misuse of shallow expert knowledge: Human schedulers always

over-simplify the constraints, or misrepresent situation-

dependent knowledge as general-purpose knowledge.

17



The special issue of AI magazine, January 1991, contains a

report of the workshop, "Issues in the Design of AI-Based

Schedulers", by Kempf et al. (Ref. 9). The issues covered in the

workshop included expert vs. deep vs. interactive schedulers,

integrating predictive and reactive decision-making, maintaining

convenient schedule descriptions, and some other advanced topics

like learning and benchmarks. Several points expressed by the

participants are very interesting and representative:

I. Fully automated schedulers are not as desirable as interactive

schedulers because the man and the machine bring complementary

skills to the scheduling task.

2. Many deployed scheduling systems contain only a small amount

of AI. Successful systems can be dominated by other issues

such as the user interface, database connections, and real-

time data collection.

3. One strong point for interactive methods is that they allow

humans to build schedules by methods that they naturally use

but are hard to represent, and allow humans to guide the
search.

4. Integration of predictive and reactive scheduling components

is important. A blackboard-style scheduling system

architecture may be appropriate.

5. Optimization is an ill-conceived objective for scheduling. It

is hard to define, and factory operations are unpredictable.

Fox and Smith proposed a knowledge-based system for factory

scheduling called ISIS (Ref. 6). The central idea of ISIS is that

schedule construction can be cast as a constraint-directed

activity that is influenced by all relevant scheduling knowledge.

In the paper, they pointed out that given the conflicting nature

of the domain's constraints, the problem differs from typical

constraint satisfaction problems, and one cannot rely solely on

propagation techniques to arrive at an acceptable solution.

Rather, constraints must be selectively relaxed and the problem-

solving strategy must be one that finds a solution that best

satisfies the constraints. This implies that the constraints must

serve to discriminate among alternative hypotheses as well as to

restrict the number of hypotheses generated. The design of ISIS
focused on two issues:

I. Construction of knowledge representation that captures the

requisite knowledge of the job shop environment and its

constraints to support constraint-directed search, and

2. Development of a search architecture capable of exploiting

this constraint knowledge to effectively control the

combinatorics of the underlying search space.

In constructing a job shop schedule, ISIS conducts a

hierarchical multi-level constraint-directed search in the space

of all possible schedules. The different levels of the search

provide multiple abstractions of the scheduling problem, each a

function of the specific types of constraints that are considered

at that level. Control generally flows in a top down fashion, and

communication between levels is accomplished via the exchange of
constraints.

18



Syswerda and Palmucci presented the construction of a
genetic algorithm based optimizer for a resource scheduling
application (Ref. 12). Genetic algorithms (GA) use Darwin's
fitness-for-survival principle to do function optimization. The
optimizer described in the paper is a combination of local expert
search and global search provided by a genetic algorithm. The
issues involved in the construction of a GA-based scheduler
include:

I. how to represent the schedule as a bit-string used in GA,
2. how to isolate the details of the problem from the GA.

They also pointed out that the system must be able to combine
manual scheduling of special cases with automatic scheduling
based on more general criteria. Manual scheduling is accomplished
by the use of an intelligent graphical interface. The interface
is intelligent in that it understands all the well-defined
constraints of the scheduling problem, and advises the user about
where to place tasks while disallowing the construction of
illegal schedules. We have similar graphical user interface in
SLS-PLAN-IT.

SLS-PLKN-IT's System Architecture:

SLS-PLAN-IT's approach to problem solving relies on three
highly interactive elements: a model builder to construct
activity and resource models, a user interface that takes into
consideration what the user needs to know and how he controls or
directs the scheduling process, and the scheduling strategies.

Hayes-Roth (Ref. 7) used a blackboard model to implement
their opportunistic strategy, planning both top-down and bottom-
up. Smith et al (Ref. ii) reported an extension of ISiS to OPIS
(the Opportunistic Intelligent Scheduler), which was implemented
with a blackboard style architecture. These knowledge sources
had implemented alternate scheduling strategies that extended and
revised a global set of scheduling hypotheses. Smith et al.
reported better performance than that of ISIS with the
multiperspective scheduling approach. These blackboard models
have beed adopted by SLS-PLAN-IT scheduling system.

The blackboard structure is a global, hierarchical data
structure partitioned to represent the problem domain as a
hierarchy of analysis levels. Each level consists of nodes that
are objects in the system implemented as frame structures. The
nodes are integrated by links, where a node in the hierarchical
structure represents an aggregation of lower level nodes. Thus,
the blackboard can be structured as an undirected graph of nodes.
However, one can place nodes without links on the blackboard.
During problem solving, partial schedules begin to grow on the
blackboard. The higher levels represent abstract decisions made
about the general pattern of the mission schedule, while the
lower levels represent decisions made about the specific details
of the schedule. The relationships of the nodes are either
specified by the model builder prior to the scheduling sessions,
or specified via the mouse by the user dynamically during the

19



manual-mode scheduling sessions. Thus, knowledge sources can
create decisions that refine the schedule from the higher to the
lower levels of the blackboard, growing the schedule in a top-
down fashion. Alternatively, knowledge sources can create
decisions about specific details of a schedule and incorporate
those decisions into the whole schedule, growing the schedule in
a bottom-up fashion. The knowledge sources are specialists that
access the blackboard by creating nodes, modifying nodes, or
modifying links between nodes. This allows a knowledge source to
contribute information without knowing which other knowledge
sources will be using the information. In SLS-PLAN-IT, the
knowledge sources are implemented as scheduling strategies that
can be triggered whenever a goal is posted or whenever data
changes. The three main components of the system are described in
detail in the following sections.

Model Builder

SLS-PLAN-IT uses a datatype specification modeling language

to model the scheduling requirements of the mission. The purpose

of having the modeling language is two-fold. Firstly, it is to

simplify resource definitions programming so that classes of

items already defined need not be re-coded by hand. Secondly, it

is to insulate the resource-describer from having to know the

exact order of resource definition commands that must be included
in the source code.

In response to the users' request to remove the major

obstacle that discourages the users from using SLS-PLAN-IT, a
model builder is currently under development and will be included
into SLS-PLAN-IT for the SLS2 mission.

The model builder will be able to construct activity models

and resource models. An activity can be an experiment to be

scheduled or an electrical storage to be discharged. Resources

include the depletables, the non-depletables and the human

resource. Examples include the power, the data rate, and the
crew.

An activity model will include a series of individual steps

to be performed in the experiment, the scheduling time ranges or

time allotment, the resources to be used, and the constraints in

scheduling. The steps in an activity may occur sequentially or

concurrently, or they may overlap one another.

Resources are modeled as timelines that show how each

resource is used or changed throughout the entire sequence. A

resource model will include the availability of the resource in

quantity and time, and the constraints in scheduling.

The activities and the resources interact with each other

throughout the scheduling process. Whenever an activity or a

step of an activity is changed, the resource timelines will be

updated. Whenever the usage of any resource has exceeded its

limits, a conflict will be detected. In this way, the resource



models will serve as safeguards against the misallocation of the
resources.

User Interface

SLS-PLAN-IT's man-machine interface focuses on the graphical

presentation of the resources and activities. Control of the

program is through pop-up menus and mouse operations. The screen

of SLS-PLAN-IT is divided into six sections (see Figure). The

top section includes a status pane that displays operational

messages of the program, or the status information of the mouse,
or the detailed information related to the timeline interval over

which the mouse is positioned. The next five sections are

graphical displays of the experiment timelines, the equipment-

resource timelines, the non-depletable-resource timelines, the

target or attitude opportunity information window, and the

unattended-operation timelines, one below another. The

unattended-operations consume resources, but no crew were

associated with them except for occasional monitoring. The

details of an experiment can be edited interactively. The

n

Figure

21



resource timelines display white where there is no load, gray

where loads exist with no resource conflict, and black to denote

a conflicting area. By positioning the mouse over an activity,

details of the activity will be displayed in the status pane to

aid the user in editing. When the mouse is over a resource

timeline, the status pane will display the amount of the resource

being used and the activities involved. When the mouse is over a

conflicted resource area, the status pane will display the
activities that caused the conflict.

When the entire SpaceLab sequence of the mission is

displayed, the screen is overwhelmed by the amount of detail.

Therefore, SLS-PLAN-IT provides a zooming facility for the user

to tailor the screen display to his/her need. The user can

examine any portion of the timelines at any specified scale.

Since SLS-PLAN-IT's display is interactive, the user can actually

watch during the automatic mode what the scheduling strategy is

doing as the experiments are being moved and modified. The

impact on the resource timelines and on the experiments is

directly and immediately shown to the user. At any point in the

processing, the user can redirect SLS-PLAN-IT to focus on a

different aspect of the sequence.

There are several modes of operation in SLS-PLAN-IT, from

running without user interaction to user controlling the search

or user manually scheduling the experiments. Therefore, the user

can select the level of control over the mission timeline, and go

back and forth among the various modes of operation.

An important feature of SLS-PLAN-IT is the explicit conflict

representation on resource timeline. This is a natural

representation for the expert user and thus made the interaction

with the user more direct and simpler. Since the experiments are

tracked explicitly on the Gantt-chart type timeline blackboards,

the experiments could be scheduled in any random order.

The ability of an expert scheduler to intuitively grasp what

the scheduling engine is trying to do is very important, as has

been noticed by several researchers as a necessary condition of a

successful scheduling system. SLS-PLAN-IT developers are well
aware of this.

Soheduling Strategies

Besides the manual scheduling mode supported by the

blackboard structure, the constraint propagation mechanism and

the graphical user interface, SLS-PLAN-IT also supports automatic

scheduling mode with various scheduling strategies. One of the

fundamental ideas of SLS-PLAN-IT is that there is no single

"correct" way to sequence. In fact, no single way is powerful

enough to do the task in a reasonable time. Thus, SLS-PLAN-IT

supports a number of scheduling strategies that can then be

combined into a scheduling session.

In automatic mode, the system must be able to compare

2



different partial schedules and choose one to continue
scheduling. This requirement is reflected in the structure of
scheduling strategy. A strategy consists of three parts. The
first part is a goodness measure that indicates whether one
sequence is better than another. This measure can change from
strategy to strategy. Typically, the goodness measure rates the
total conflict on the resource lines. The second part is to
select activities to be changed, which can simply be all the
activities of certain types or the activities involved in the
worst conflict. The third part is to suggest the actions to be
taken such as to move, to modify, or to delete an activity. SLS-
PLAN-IT makes small changes, one at a time, to improve a goodness
rating.

Several strategies are currently implemented in SLS-PLAN-IT.
These strategies together form a hill climber. A goodness rating
will determine a topology for the search space. A strategy will
change the schedule until it finds a local maximum in the
topology of the search space. By selecting a different strategy,
the topology of the space will be changed and the SLS-PLAN-IT
will be able to continue improving the mission sequence.

SLS-PLAN-IT possesses meta-knowledge in the form of strategy
modifiers. These modifiers restrict the search space of a
strategy. An example of this is the restriction on the number of
resources a strategy could consider. This particular modifier is
based on the knowledge that, to the first order, a mission
schedule is determined by a small subset of the total number of
resources. Other modifiers force a strategy to only consider
moving experiments to areas of the mission timeline that have
little resource usage.

There seems to be no single best way in scheduling. The
scheduling techniques depend on the particular project, the life
point in the mission, and the current schedule. SLS-PLAN-IT is
able to represent many different scheduling strategies.
Flexibility in choosing a suitable scheduling strategy is the key
to successful scheduling. The concept of scheduling strategy
provides a natural hook of SLS-PLAN-IT system to any optimization
technique. Given a goodness measure as the objective function,
all the scheduling and sequencing techniques available from
traditional operations research discipline or non-traditional
combinatorial optimization approaches can be incorporated into
SLS-PLAN-IT in the form of scheduling strategies.

Current Status of SLS-PLAN-IT:

MIO of GE Government Services obtained the original PLAN-IT

source code from JPL in 1988. We have tailored the software for

use in the scheduling of Spacelab experiments to support the

Spacelab Life Science missions. Although the original PLAN-IT has

the ability to perform very specialized strategies to resolve

particular scheduling difficulties, the automatic mode that uses

the above strategies is still not powerful enough to handle the

overconstrained resource requirements of scheduling the Spacelab



mission timeline. MIO's current major concerns in SLS-PLAN-IT to
support the SLS-2 mission include the graphical user interface
and the automatic constraint propagation capability, which allow
the user to modify a timeline by mouse operations. We will
enhance the automatic scheduling capabilities for SLS-3.

A Spacelab mission timeline contains over fifty resources
and hundreds of experiments. The timeline engineers can manually
enter the initial schedule or use MSFC's tabular-form scheduler
ESP to produce the initial schedule. During SLS-I mission
planning phase, the timeline engineers used SLS-PLAN-IT to
maintain the schedule produced by ESP. After the schedule was
modified by SLS-PLAN-IT, the modified schedule was transmitted to
the Flight Planning System (FPS) for standard output plotting.

The SLS-PLAN-IT Scheduling System was used to support the
Spacelab Life Sciences-i (SLS-I) mission during the mission
period from 6/05/91 to 6/14/91. This on-line real time usage of
SLS-PLAN-IT during the mission demonstrated the strength of this
scheduling system. The timeline engineers of the Payload Activity
Planning (PAP) team confirmed that SLS-PLAN-IT is a flexible and
useful scheduling tool that provides a real time reactive
planning capability that the old scheduling system ESP/FPS
lacks. For example, the timeline engineer had used SLS-PLAN-IT to
reschedule the activities on flight day 9 due to short notice.
The ESP required more time than available to do this kind of

replanning. The SLS-PLAN-IT had won the user confidence and

acceptance that were not in existence in the early stage of PLAN-

IT development.

Feedbacks from SLS-PLAN-IT users during SLS-I mission are:

i. The system gives visual display of experiment timeline with

schedule conflicts indicated. Mission planning using SLS-PLAN-

IT is much quicker than using ESS.

2. The mouse and menu-driven user-interface of SLS-PLAN-IT and

the Gantt-chart like resource timeline are very convenient to

support manual-mode scheduling of the mission. Minimum user

training is needed for manual-mode scheduling if SLS-PLAN-IT

is used, instead of the six months training time of ESS.
3. It is usable as a real-time reactive mission scheduler with

prospects of increasing productivity of mission support staff

and increasing science returns of the Spacelab experiments.

4. A quicker and more convenient model-builder is needed to

support the SLS-2 mission. The integration of SLS-PLAN-IT with

other flight planning software needs to be improved.

Enhancementz

The on-line real time usage of SLS-PLAN-IT aroused the user

interests to further enhance the SLS-PLAN-IT software. The major

enhancement requirements include:

I. rehosting SLS-PLAN-IT to a SUN platform to boost the operation

speed and to allow better integration,

2. providing an intelligent model builder to enhance the model

editing capability and shorten the modeling and planning time,

24



3. providing more options for automatic file creation and

generation of operation output in current FPS format, which

includes the information of ground tracking, attitude

timeline, sun/shadow times and all other miscellaneous

information on other FPS output.

4. additional capabilities to support the execute shift

activities; the exact requirements are to be determined.

The direction we are taking is to completely replace the FPS

system with SLS-PLAN-IT in the SLS-3 time period. With a very

high level of user involvement, the SLS-PLAN-IT will evolve as a

fully automated knowledge-based scheduling system with graphical

user interface for space exploration.

In summary, the performance of SLS-PLAN-IT during the SLS-I

mission was very satisfactory. Recommendation for further
enhancements of the software was made for the SLS-2 mission. It

is expected that the SLS-PLAN-IT will completely replace the ESS

currently in use by the MIO in the SLS-3 time frame.

Conclusion and lessons learned:

During the development of SLS-PLAN-IT, we have gained some

useful experience in software engineering of an AI-based

scheduling system that we would like to share with the community:

i. Quick response time is crucial in real time scheduling
environment. One of the reasons that JPL's version of PLAN-IT

was abandoned is that it did not have a model editor. It took

an hour or more on Symbolics 3650 to incorporate the model

from ESS. We improved the operation time to about ten minutes
in the first version of SLS-PLAN-IT. Enhancements of the model

editor to support incremental model editing are in progress.

2. Good integration of the AI scheduler with all other Flight

Planning System (FPS) software is important because the

purpose of SLS-PLAN-IT is for operational daily usage to

support the mission.

3. Automatic shift of focus is difficult to achieve. There are

many scheduling strategies available in the automatic mode of

PLAN-IT. However, the users did not use them for the SLS-I

mission. One of the reasons is that the users do not fully

comprehend the scheduling strategies. We have to better

express the strategies to the users in more natural ways or

the "automatic mode" will stay unused.

4. It is very important to allow the users to play "what-if"

games during scheduling process and see why things happened.

This is one of the reasons the MIO mission planners switched

from using ESS to using SLS-PLAN-IT.

5. User-naturalness is the key to have a good user interface. For

example, the automatic constraint propagation capability of
SLS-PLAN-IT and the blackboard structure of the resource lines



are user-natural tools to support the above vital features.

6. The level of user involvement and expectation of SLS-PLAN-IT

is very high in MIO over MSFC and JPL. In fact, the users

always expect more than the developers can provide. We are

driven by the users and the users are driven by the scheduling

workloads they support•

7. The effects of a schedule change should be kept as local and

as minor as possible. Minimum disruption of the schedule is

sometimes more importan t than obtaining an optimal schedule.

Our experience with SLS-PLAN-IT reconfirms the observations

made in the IJCAI workshop mentioned earlier. Fully automated
schedulers are not as desirable as interactive schedulers because

the man and the machine bring complementary skills to the

scheduling task. Also, deployed scheduling systems contain only a

small amount of AI. The issues of user interface, database

connection, and real-time requirements dominate the system design

and user acceptance of the scheduling system. The most important
feature emphasized in SLS-PLAN-IT is the user-natural interface

to cooperate with humans in changing perspective or focus level

to support the opportunistic scheduling strategies• The various

strategies employed in the automatic scheduler are attempts to

simulate the opportunistic scheduling capability of the human.

Acknowledgment:

The authors would like to thank Mr. Michael Hollander and

Mr. William C. Eggemeyer of Jet Propulsion Laboratory for

providing us the source code of the original PLAN-IT software

and giving us valuable advice during the software conversion

period• We would also like to thank all the timeline engineers of

MIO/GEGS, Houston, Texas, for giving us their requirements and

user feedback concerning the SLS-PLAN-IT Scheduling System.

This work is performed by GE Government Services, Johnson

Space Center, Houston Texas in support of the NASA Mission

Management Office government contract NAS9-17884.

REFERENCE_

1 Bennington, G.E., & McGinnis, L.F. (1972). A Critique of

Project Planning with Constrained Resources. Symposium on the

Theory of Scheduling and its Application, Springer-Verlag,
New York, 1973.

• Boarnet, M.G. (1986). Requirements for a Scheduling Expert

System Tool. NASA/JSC Mission Planning and Analysis Division,

Internal Memorandum #FM7(86-66), April 1986.

• Coffman Jr., E.G. (1976)• Computer and Job Shop Scheduling

Theory, John Wiley and Sons, Inc., New York, 1976.

4. Dhar, V., & Ranganathan, N. (1990). Integer Programming vs.

26



Expert Systems: An Experimental Comparison, CACM March 1990,

pp. 323-336•

. Elmaghraby, S.E. (1973)• Symposium on the Theory of

Scheduling and Its Applications, Springer-Verlag, Berlin 1973

• Fox, M.S., & Smith, S.F. (1984)• ISIS--A Knowledge-Based

System for Factory Scheduling. Expert System, Vol i, No. i,

July, 1984.

e Hayes-Roth, B. (1985). A Blackboard Architecture for Control.

Journal of Artificial Intelligence, Vol 26, pp 251-321.

• Jaap, J., & Davis, E. (1986)• Expert Scheduling for Spacelab

Mission. Proceeding of Conference on Space Applications of

Artificial Intelligence, Huntsville, AL, Nov 13-14, 1986.

. Kempf, K., Pape, C., Smith, S.F., & Fox, B.R. (1991). Issues

in the Design of AI-Based Schedulers: A Workshop Report. AI

Magazine, Special Issue Jan. 1991. pp. 37-46.

i0. Sidhu, S. (1989). Avoiding Typical Mistakes while Building

Intelligent Scheduling System. Panel Discussion on AI-Based

Schedulers in Manufacturing Practice, IJCAI-89, Detroit,

Michigan, USA, August, 1989.

ii. Smith, S.F., Fox, M.S°, & Ow, P.S. (1986). Constructing and

Maintaining Detailed Production Plans: Investigations into

the Development of Knowledge-Based Factory Scheduling

Systems. AAAI's AI Magazine, Vol. 7, No. 4, Fall 1986.

12. Syswerda, G., & Palmucci, J. (1991). The Application of

Genetic Algorithms to Resource Scheduling. Proceeding of the

Fourth International Conference on Genetic Algorithms (ICGA-

1991), San Diego, CA, July 13-16, 1991.

13. Vere, (1981). Planning in Time: Windows and Durations for

Activities and Goals. IEEE Transaction on Pattern Analysis

and Machine Intelligence, Vol. 5, No. 3, pp. 246-267, May,

1981.

27




